The post discusses a simple solar panel buck converter circuit which can be used to obtain any desired low bucked voltage from 40 to 60V inputs. The circuit ensures a very efficient voltage conversions. The idea was requested by Mr. Deepak.

Technical Specifications

I am looking for DC - DC buck converter with following features.

1. Input voltage = 40 to 60 VDC

2. Output voltage = Regulated 12, 18 and 24 VDC (multiple output from the same circuit is not required. Separate circuit for each o/p voltage is also fine)

3. Output current capacity = 5-10A

4. Protection at output = Over current, short circuits etc.

5. Small LED indicator for unit operation would be an advantage.

Appreciate if you could help me designing the circuit.

Best regards,

The Design

The proposed 60V to 12V, 24V buck converter circuit is shown in the figure below, the details may be understood as explained below:

The configuration could be divided into stages, viz. the astable multivibrator stage and the mosfet controlled buck converter stage.

BJT T1, T2 along with its associated parts forms a standard AMV circuit wired to generate a frequency at the rate of about 20 to 50kHz.

Mosfet Q1 along with L1 and D1 forms a standard buck converter topology for implementing the required buck voltage across C4.

The AMV is operated by the input 40V and the generated frequency is fed to the gate of the attached mosfet which instantly begins oscillating at the available current from the input driving L1, D1 network.

The above action generates the required bucked voltage across C4,

D2 makes sure that this voltage never exceeds the rated mark which may be fixed 30V.

This 30V max limit bucked voltage is further fed to a LM396 voltage regulator which may be set for getting the final desired voltage at the output at the rate of 10amps maximum.

The output may be used for charging the intended battery.

Circuit Diagram

Parts List for the above 60V input, 12V, 24V output buck converter solar for the panels.

R1---R5 = 10K
R6 = 240 OHMS
R7 = 10K POT
C1, C2 = 2nF
C3 = 100uF/100V
C4 = 100uF/50V
Q1 = ANY 100V, 20AMP P-channel MOSFET
T1,T2 = BC546
D3 = 1N4007
L1 = 30 turns of 21 SWG super enameled copper wire wound over a 10mm dia ferrite rod.

Need Help? Please send your queries through Comments for quick replies!