In this post we learn 2 easy to build induction heater circuits which work with high frequency magnetic induction principles for generating substantial magnitude of heat over a small specified radius.

The discussed induction cooker circuits are truly simple and uses just a few active and passive ordinary components for the required actions.


You may also want to learn how to design your own customized induction heater cooktop:

Designing an Induction Heater Circuit - Tutorial

Induction Heater Working Principle

According to the involved principle when a change in magnetic field is forced around a metal, electrons inside the metals get agitated and begins flowing across the metal, this is termed as eddy current. This flow of current in the metal or the introduced conductor causes a heat to be generated in the metal making it warmer.

The generated heat is proportional to (current)^2 x resistance of the metal.

The above heat is also directly proportional to the induced frequency and that's why ordinary iron stamped transformers are not used in high frequency switching applications, instead ferrite materials are used as cores.

However here the above drawback is exploited for acquiring heat from high frequency magnetic induction.

Referring to the proposed induction heater circuit below, we find the concept utilizing the ZVS or zero voltage switching technology for the required triggering of the mosfets.

The technology ensures minimum heating of the devices making the operation very efficient and effective.

Further to add, the circuit being self resonant by nature automatically gets sets at the resonant frequency of the attached coil and capacitor quite identical to a tank circuit.

Using Royer Oscillator

The circuit fundamentally makes use of a Royer oscillator which is marked by simplicity and self resonant operating principle.

However the main downside of the design is that it employs a center tapped coil as the transformer, which makes the winding implementation a bit trickier. However the center tap allows an efficient push pull effect over the coil through just a couple of active devices such as mosfets.

As can be seen, there are fast recovery or high speed switching diodes connected across the gate/source of each mosfet.

These diodes perform the important function of discharging the gate capacitance of the respective mosfets during their non-conducting states thereby making the switching operation snappy and quick.

The Mosfets

You can use IRF540 as the mosfets which are rated at good 110V, 33amps. Heatsinks could be used for them, although the heat generated is not to any worrying level, yet still it's better to reinforce them on heat absorbing metals.

The inductor L2 terminating from center of the main induction coil is a kind of choke for eliminating any possible entry of the high frequency content into the power supply and also for restricting the current to safe limits.

Relatively the value of L2 should be high enough, a 2mH will do the job well. However it must be built using high gauge wires for enabling high current usage through it safely.

The Tank Circuit

C1 and L1 constitute the tank circuit here for the interned high resonant frequency latching. Again these too musts be rated to withstand high magnitudes of current and heat.

Here we can see the incorporation of a 330nF/400V metalized PP capacitors.

Circuit Diagram of the first Design

simple induction heater circuit

Now comes L1, which is the most crucial element of the whole circuit. It must be built using extremely thick copper wires so that it sustains the high temperatures during the induction operations.

The capacitor as discussed above must be ideally connected as close as possible to the L1 terminals. his is important for sustaining the resonant frequency at the specified 200kHz frequency.

Work Coil Specifications

For the induction heater coil L1, many 1mm copper wire may be wound in parallel or in bifilar manner in order to dissipate current more effectively causing lower heat generation in the coil.

Even after this the coil could be subjected to extreme heats, and could get deformed due to it therefore an alternative method of winding it may be tried.

In this method we wind it in the form of two separate coils joined at the center for acquiring the required center tap.

In this method lesser turns may be tried for reducing the impedance of  the coil and in turn increase its current handling capability.

The capacitance for this arrangement may be in contrast increased in order to pull down the resonant frequency proportionately.

Tank Capacitors:

In all 330nF x 6 could be used for acquiring a net 2uF capacitance approximately.

How to Attach Capacitor to the Induction Work Coil

The following image shows the precise method of attaching the capacitors in parallel with the end terminals of the copper coil, preferably through a well dimensioned PCB.

LC tank copper tube coil, capacitor, positioning for optimal heating

Parts list for the above induction heater circuit or induction hot plate circuit

R1, R2 = 330 ohms 1/2 watt

D1, D2 = FR107 or BA159

high speed diodes used for induction heating

T1, T2 = IRF540

C1 = 10,000uF/25V

C2 = 2uF/400V made by attaching the below shown  6nos 330nF/400V caps in parallel

capacitor used in induction heater

D3----D6 = 25 amp diodes

IC1 = 7812

L1 = 2mm brass pipe wound as shown in the following pics, the diameter can be anywhere near 30mm (internal diameter of the coils)

L2 = 2mH choke made by winding 2mm magnet wire on any suitable ferrite rod

TR1 = 0-15V/20amps

POWER SUPPLY: Use regulated 15V 20 amp DC power supply.

component fixing details of induction heater

Using BC547 transistors in place of high speed diodes

In the above induction heater circuit diagram we can see the mosfets gates consisting of fast recovery diodes, which might be difficult to obtain in some parts of the country.

A simple alternative to this may be in the form of  BC547 transistors connected instead of the diodes as shown in the following diagarm.

The transistors would perform the same function as the diodes since the BC547 can operate well around 1Mhz frequencies.

Another Simple DIY Design

The following schematic shows the second simple design which can be constructed quickly at home for implementing a desired induction heater coil.

alternative induction heater design

Parts List

R1, R4 = 1K 1/4 watt MFR 1%

R2, R3 = 10K 1/4 watt MFR 1%

D1, D2 = BA159 or FR107

Z1, Z2 = 12V, 1/2 watt zener diodes

Q1, Q2 = IRFZ44n mosfet on heatsink

C1 = 0.33uF/400V or 3 nos 0.1uF/400V in parallel

L1, L2, as shown in the following images:

L2 is salvaged from any old ATX computer power supply.

work coil dimension image prototype

 connecting induction heater to power supply

induction heater suppressor coil using ATX inductor

induction heater working with red hot drill bit

Modifying into a Hot Plate Cookware

The above sections helped us to learn a simple induction heater circuit using a spring like coil, however this coil cannot be used for cooking food, and needs some serious modifications.

The following section of the article explains, how the above idea can be modified and used like a simple small induction cookware heater circuit or an induction kadai circuit.

The design is a low tech, low power design, and may not be on par with the conventional units.

The circuit was requested by Mr. Dipesh Gupta

Technical Specifications

I have read your article Simple Induction Heater Circuit - Hot Plate Cooker Circuit And was very happy to find that there are people ready to help youngsters like us to do something ....

Sir I am trying to understand the working and trying to develop an induction kadai for myself ... Sir please help me understanding the designing as I m nt so good in electronics

I want to develop an induction to heat up a kadai of dia 20 inch with 10khz frequency at a very low cost !!!

I saw your diagrams and article but was a bit confused about

1. Transformer used

2. How to make L2

3. And any other changes in the circuit for 10 to 20 kHz frequency with 25ams current

Please help me sir as soon as possible ..It will be help full if u could provide with the exact components detail needed .. PlzzAnd lastly u had mentioned to use POWER SUPPLY: Use regulated 15V 20 amp DC power supply. Where is it used ....


Dipesh gupta

The Design

The proposed induction kadai circuit design presented here is just for experimental purpose and may not serve like the conventional units. It may be used for making a cup of tea or cooking an omelet quickly and nothing more should be expected.

The referred circuit was originally designed for heating iron rod like objects such as a bolt head. a screwdriver metal etc, however with some modification the same circuit can be applied for heating metal pans or vessels with convex base like a "kadai".

For implementing the above, the original circuit wouldn't need any modification, except the main working coil which will need to be tweaked a bit to form a flat spiral instead of the spring like arrangement.

As an example, in order to convert the design into an induction cookware so that it supports vessels having a convex bottom such as a kadai, the coil must be fabricated into a spherical-helical shape as given in the figure below :

The schematic would be the same as explained in my above section, which is basically a Royer based design, as shown here:

Designing the Helical Work Coil

L1 is made by using 5 to 6 turns of 8mm copper tube into a spherical-helical shape as shown above in order to accommodate a small steel bowl in the middle.

The coil may be also compressed flat into a spiral form if a small steel pan is intended to be used as the cookware as shown below:

flat helical spiral coil based induction heater

Designing the Current Limiter Coil

L2 may be built by winding a 3mm thick super enameled copper wire over a thick ferrite rod, the number of turns must be experimented until a 2mH value is achieved across its terminals.

TR1 could be a 20V 30amp transformer or an SMPS power supply.

The actual induction heater circuit is quite basic with its design and does not need much of an explanation, the few things that needs to be taken care of are as follows:

The resonance capacitor must be relatively closer to the main working coil L1 and should be made by connecting around 10nos of 0.22uF/400V in parallel. The capacitors must be strictly non-polar and metalized polyester type.

Although the design may look quite straightforward, finding the center tap within the spirally wound design could pose some headache because a spiral coil would have an unsymmetrical layout making it difficult to locate the exact center tap for the circuit.

It could be done by some trial and error or by using an LC meter.

A wrongly located center tap could force the circuit to function abnormally or producing unequal heating of the mosfets, or the entire circuit may just fail to oscillate under a worst situation.

Reference: Wikipedia

Need Help? Please send your queries through Comments for quick replies!