The following post of a full wave motorcycle shunt regulator circuit was requested by Mr.Michael. Let's learn  the circuit functioning in details.

How a Shunt Regulator Works

Shunt regulator is a device which is used for regulating voltage to some fixed levels by means of shunting. Normally the process of shunting is done by grounding the excess voltage, just as zener diodes do in electronic circuits.

However one bad aspect with such regulators is the generation of unnecessary heat. The reason for heat generation is the principle of its operation where the excess voltage is short circuited to ground.

The above practice may be implemented by simpler and cheaper means, but cannot be considered efficient and advanced. The system is based on destroying or killing energy instead of eliminating or inhibiting it.

The circuit of a motorcycle shunt regulator discussed in this article takes a completely different approach and restricts the in-flow of excess voltage instead of "killing" energy and thus stops the generation of unnecessary heat.

Simulation and Working

The circuit functioning may be understood as under:

When the mobike is started, voltage enters across the P-channel mosfet source/drain pins due to the gate trigger that becomes available via R1.

The moment the high voltage reaches R3, which happens to be the sensing input of the opamp, pin#3 of the IC senses an increased voltage.

As per the set reference at puin#2, the instantaneously reacts to the situation and the result puts the output of the IC to a high logic level.

The immediate high logic pulse restricts the negative base trigger of the mosfet, switching it OFF at that particular instant.

The moment T1 switches OFF, voltage at the junction of R3/R4 reverts to the original condition, that is the voltage here now drops below the reference level......this instantly activates the opamp output with a low logic signal which in turn switches ON T1 back into action.

The process repeats at a very rapid speed, keeping the output voltage marked with +/- at a constant level determined by the setting of R2/Z1 and R3/R4.

The above principle utilizes voltage inhibition technique of the excess voltage instead of shunting it to ground, thus saves precious power and also helps to control global warming in some way.

Parts List

R1, BR2 = 10Amp bridge rectifier

R1 = 1K
D1 = 1N4007
C1 = 100uF/25V
IC1 = IC741
T1 = mosfet J162

R2/Z1, R3/R4 = as explained in this article

The above design might not be correctly configured, please refer to the following updated diagram which shows the correct version of the proposed motorcycle shunt regulator circuit:

Motorcycle Full Wave Shunt Regulator Circuit

Parts List

R1, R2, R3 = 10K
R4 = 10K preset
Z1, Z2 = 3V zener 1/4 watt
C1 = 10uF/25V
T1 = TIP142 (on large heatsink)
IC1 = 741
D1 = 6A4 diode
D2 = 1N4148
Bridge rectifier = standard motorcycle bridge rectifier

How to Set up the Circuit

For a 12V system, apply a 18V from a DC power supply from the T1 side, and adjust R4 to precisely set 14.4V across the output terminals.

An even simpler motorcycle shunt regulator using the shunt regulator IC TL431 can be witnessed below, the 3k3 resistor can be tweaked to change the output voltage to the most favorable level.

Need Help? Please send your queries through Comments for quick replies!